National Repository of Grey Literature 2 records found  Search took 0.01 seconds. 
Material nonlinear solution of beam structures
Kabeláč, Jaromír ; Krejsa,, Martin (referee) ; Návrat,, Tomáš (referee) ; Němec, Ivan (advisor)
The dissertation deals with solution of beam and frame structure considering material nonlinearity. The finite elements method (FEM) was used as calculation method. The objective of the dissertation was to develop and test finite beam element considering material nonlinearity. A detailed analysis of the problem provided a group of formulations of beam element. Part of the dissertation´s results has been, in several forms, implemented in commercial software. Beam element focused on solution of stress over solid cross sections is introduced in the theoretical part. In terms of topology it is a classical prismatic beam element with two nodes. Six degrees of freedom for translations and rotations are defined in each node plus 7-th degree of freedom for warping function from torsion. Load form axial force, bending moments, primary torsion, shear forces and eventually bimoment for secondary torsion were considered in cross section. Several variants of formulations were created according to inclusion of loading components into material nonlinearity and according to numeric integration method. Inclusion of geometric nonlinearity and fire resistance calculation are discussed in the dissertation. The above mentioned formulations were tested on prototypes as described in the application part which also provides information on the general procedure, architecture and technologies used for implementation of knowledge from the theoretical part into commercial FEM software. The dissertation shows implementation of plasticity for shell, solutions of cross section characteristics and stress on cross section, implementation of beam element with material nonlinearity and module for fire resistance of column. The above mentioned implementations of theoretical conclusions are the main outputs of the dissertation. These implementations are available in thousands of installations throughout Europe where being used at projection of significant constructions.
Material nonlinear solution of beam structures
Kabeláč, Jaromír ; Krejsa,, Martin (referee) ; Návrat,, Tomáš (referee) ; Němec, Ivan (advisor)
The dissertation deals with solution of beam and frame structure considering material nonlinearity. The finite elements method (FEM) was used as calculation method. The objective of the dissertation was to develop and test finite beam element considering material nonlinearity. A detailed analysis of the problem provided a group of formulations of beam element. Part of the dissertation´s results has been, in several forms, implemented in commercial software. Beam element focused on solution of stress over solid cross sections is introduced in the theoretical part. In terms of topology it is a classical prismatic beam element with two nodes. Six degrees of freedom for translations and rotations are defined in each node plus 7-th degree of freedom for warping function from torsion. Load form axial force, bending moments, primary torsion, shear forces and eventually bimoment for secondary torsion were considered in cross section. Several variants of formulations were created according to inclusion of loading components into material nonlinearity and according to numeric integration method. Inclusion of geometric nonlinearity and fire resistance calculation are discussed in the dissertation. The above mentioned formulations were tested on prototypes as described in the application part which also provides information on the general procedure, architecture and technologies used for implementation of knowledge from the theoretical part into commercial FEM software. The dissertation shows implementation of plasticity for shell, solutions of cross section characteristics and stress on cross section, implementation of beam element with material nonlinearity and module for fire resistance of column. The above mentioned implementations of theoretical conclusions are the main outputs of the dissertation. These implementations are available in thousands of installations throughout Europe where being used at projection of significant constructions.

Interested in being notified about new results for this query?
Subscribe to the RSS feed.